Research Group

We strive to generate and apply polymer materials, both via synthetic and biological methodologies, equipped with both, dynamic and adaptive properties. Focus areas are the molecular design of functional polymers (synthesis, novel functionalization strategies) via control of inter/intramolecular interactions. Our generated materials address self-healing polymers, biomimetic diagnostic/delivery systems (artificial membranes, protein/polymer conjugates) and concepts for charge-storage-materials (ionic liquids, batteries, fuel cell membranes).



Figure modified from the references 4, 17, 21, 31, 38, 39, 41, 48, 52 with permission including the corresponding copyrights.
  • Generate biomimetic, renewable and self-healing polymers 1–3 (research field II)
  • Synthesis and novel analytical methods for the preparation of complex macromolecular architectures 4–8 (research field I)
  • Design of nanoscaled medical imaging systems and drug-delivery systems 9–11 (research field V)
  • Develop novel electrolytes for battery and transistor systems 7, 12 (research field IV)
  • Transfer self-healing concepts into thermoplastic materials, elastomers and electrode-materials3 13–17 (research field II)
  • Study biological folding, aggregation- and chirality transfer-principles 4, 18–20 (research field III)
  • 3D-printing of polymers 21 (research field V)

Macromolecules are key molecules, indispensable for modern society. They are not only present as widely known structural materials in eg. automobiles or aeroplanes, but are found in biomedicine, modern energy- or information technology22. Research focus in our group is the preparation of functional polymers and their application in modern technology, designing polymers for medicine, as advanced structural materials, or for novel batteries and transistors.

Based on the polymer’s structural complexity we use all known living polymerization (such as ATPR, RAFT, NMP, ROMP, LCCP, LAP and ROP-methodologies)23-25 and modern functionalization strategies known from synthetic organic chemistry, including „click“-based methods26-31. Novel polymeric architectures (functional graft-, cyclic-, star-polymers)32-34 and the site-specific integration of supramolecular interactions (such as hydrogen bonds, ionomers, mechanophores)35-39 into tailored macromolecules allow to generate advanced materials in the areas of biomedicine40-44, modern imaging technology, batteries45, transistors or self-healing-materials40, 46-50. Using modern high resolution mass spectrometry (LC/ESI-MS and GPC/LC-MALDI-methods) and complex hyphenated technologies (two-dimensional chromatography (2D-LC/GPC)), advanced functions of macromolecules can be integrated by use of 3D-printing technologies.

References

  1. Chen, S., et al., Opposing Phase-Segregation and Hydrogen-Bonding Forces in Supramolecular Polymers. Angewandte Chemie International Edition 2017, 56 (42), 13016-13020,DOI:http://dx.doi.org/10.1002/anie.201707363.
  2. Chen, S., et al., Self-Healing Materials from V- and H-Shaped Supramolecular Architectures. Angewandte Chemie International Edition 2015, 54 (35), 10188-10192,DOI:http://dx.doi.org/10.1002/anie.201504136.
  3. Krishnakumar, B., et al., Catalyst free self-healable vitrimer/graphene oxide nanocomposites. Composites Part B: Engineering 2020, 184, 107647,DOI:https://doi.org/10.1016/j.compositesb.2019.107647.
  4. Freudenberg, J., et al., Chirality Control of Screw-Sense in Aib-Polymers: Synthesis and Helicity of Amino Acid Functionalized Polymers. ACS Macro Letters 2020, 686-692,DOI:https://doi.org/10.1021/acsmacrolett.0c00218.
  5. Freudenberg, J., et al., Multisegmented Hybrid Polymer Based on Oligo-Amino Acids: Synthesis and Secondary Structure in Solution and in the Solid State. Macromolecules 2019, 52 (12), 4534-4544,DOI:https://doi.org/10.1021/acs.macromol.9b00684.
  6. Biewend, M., et al., Synthesis of polymer-linked copper(i) bis(N-heterocyclic carbene) complexes of linear and chain extended architecture. Polymer Chemistry 2019, 10 (9), 1078-1088,DOI:http://dx.doi.org/10.1039/C8PY01751D.
  7. Chen, S., et al., Synthesis and Morphology of Semifluorinated Polymeric Ionic Liquids. Macromolecules 2018, 51 (21), 8620-8628,DOI:https://doi.org/10.1021/acs.macromol.8b01624.
  8. Narumi, A., et al., Evaluation of Ring Expansion-Controlled Radical Polymerization System by AFM Observation. ACS Macro Letters 2019, 8 (6), 634-638,DOI:https://doi.org/10.1021/acsmacrolett.9b00308.
  9. Kumar, S., et al., Thio-Bromo “Click” Reaction Derived Polymer–Peptide Conjugates for Their Self-Assembled Fibrillar Nanostructures. Macromolecular Bioscience 2020, 2000048,DOI:https://doi.org/10.1002/mabi.202000048.
  10. Funtan, S., et al., Biomimetic Elastin-Like Polypeptides as Materials for the Activation of Mechanophoric Catalysts. Organic Materials 2020, 2 (2), 116-128,DOI:https://doi.org/10.1055/s-0040-1702149.
  11. Kumar, S., et al., One-Pot Synthesis of Thermoresponsive Amyloidogenic Peptide–Polymer Conjugates via Thio–Bromo “Click” Reaction of RAFT Polymers. Macromolecular Rapid Communications 2017, 1700507,DOI:http://dx.doi.org/10.1002/marc.201700507.
  12. Chen, S., et al., Gating effects of conductive polymeric ionic liquids. Journal of Materials Chemistry C 2018, 6 (30), 8242-8250,DOI:http://dx.doi.org/10.1039/C8TC01936C.
  13. Raimondo, M., et al., Multifunctionality of structural nanohybrids: the crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance. Nanotechnology 2020, 31 (22), 225708,DOI:http://dx.doi.org/10.1088/1361-6528/ab7678.
  14. Guadagno, L., et al., Functional structural nanocomposites with integrated self-healing ability. Materials Today: Proceedings 2020,DOI:https://doi.org/10.1016/j.matpr.2020.03.051.
  15. Binder, W. H. „Honig“ bis „Gummi“: Die variablen Eigenschaften des Polyisobutylen. 100 Jahre Makromolekulare Chemie. Faszination  Chemie, die Informationsplattform der GDCh. [Online], 2020. https://faszinationchemie.de/makromolekulare-chemie/news/honig-bis-gummi-die-variablen-eigenschaften-des-polyisobutylen-1/.
  16. Biewend, M., et al., Detection of stress in polymers: mechanochemical activation of CuAAC click reactions in poly(urethane) networks. Soft Matter 2020, 16 (5), 1137-1141,DOI:http://dx.doi.org/10.1039/C9SM02185J.
  17. Michael, P., et al., Mechanochemical Activation of Fluorogenic CuAAC “Click” Reactions for Stress-Sensing Applications. Macromolecular Rapid Communications 2018, 1800376,DOI:https://doi.org/10.1002/marc.201800376.
  18. Evgrafova, Z., et al., Modulation of amyloid β peptide aggregation by hydrophilic polymers. Physical Chemistry Chemical Physics 2019, 21 (37), 20999-21006,DOI:http://dx.doi.org/10.1039/C9CP02683E.
  19. Evgrafova, Z., et al., Probing Polymer Chain Conformation and Fibril Formation of Peptide Conjugates. ChemPhysChem 2019, 20 (2), 236-240,DOI:https://doi.org/10.1002/cphc.201800867.
  20. Deike, S., et al., Induction of Chirality in β-Turn Mimetic Polymer Conjugates via Postpolymerization “Click” Coupling. Macromolecules 2017, 50 (7), 2637-2644,DOI:http://dx.doi.org/10.1021/acs.macromol.7b00343.
  21. Rupp, H., et al., 3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability. Macromolecular Rapid Communications 2019, 1900467,DOI:https://doi.org/10.1002/marc.201900467.
  22. Binder, W. H., The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science. Macromolecular Rapid Communications 2019, 40 (1), 1800610,DOI:https://doi.org/10.1002/marc.201800610.
  23. Kurzhals, S., et al., Combination of Olefin Metathesis Polymerization with Click Chemistry. In Handbook of Metathesis, Edition: 2nd, Robert H. Grubbs, E. K., Ed. John Wiley & Sons: 2015; pp 207-227,DOI:https://doi.org/10.1002/9783527674107.ch35.
  24. Binder, W. H., et al., ‚Click‘ chemistry in macromolecular synthesis. In Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc.: 2014; Vol. 3, pp 186-230,DOI:https://doi.org/10.1002/0471440264.pst565.
  25. Binder, W. H., et al., Click chemistry in polymer science. In McGraw-Hill Yearbook of Science & Technology, Blumel, D., Ed. McGraw-Hill: New York, 2011; pp 46-49
  26. Neumann, S., et al., The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromolecular Rapid Communications 2019, 1900359,DOI:https://doi.org/10.1002/marc.201900359.
  27. Li, N., et al., Click-Chemistry for Nanoparticle-Modification. Journal of Materials Chemistry 2011, 21 (42), 16717 – 16734,DOI:http://dx.doi.org/10.1039/C1JM11558H.
  28. Binder, W. H., et al., „Click“-Chemistry in Polymer and Material Science: An Update. Macromolecular Rapid Communications 2008, 29, 952-981,DOI:http://dx.doi.org/10.1002/marc.200800089.
  29. Binder, W. H., et al., „Click“ Chemistry in Polymer and Materials Science. Macromolecular Rapid Communications 2007, 28 (1), 15-54,DOI:https://doi.org/10.1002/marc.200600625.
  30. Binder, W. H., et al., Azide/alkyne-„click“ reactions: applications in material science and organic synthesis. Current Organic Chemistry 2006, 10 (14), 1791-1815,DOI:https://doi.org/10.2174/138527206778249838.
  31. Siva Prasanna Sanka, R. V., et al., Nitrogen-doped graphene stabilized copper nanoparticles for Huisgen [3+2] cycloaddition “click” chemistry. Chemical Communications 2019, 55 (44), 6249-6252,DOI:http://dx.doi.org/10.1039/C9CC02057H.
  32. Shaygan Nia, A., et al., Graphene as initiator/catalyst in polymerization chemistry. Progress in Polymer Science 2017, 67, 48-76,DOI:http://dx.doi.org/10.1016/j.progpolymsci.2016.12.005.
  33. Haryono, A., et al., Controlled Arrangement of Nanoparticle Arrays in Block-Copolymer Domains. Small 2006, 2 (5), 600-611,DOI:http://dx.doi.org/10.1002/smll.200500474.
  34. Binder, W. H., Supramolecular Assembly of Nanoparticles at Liquid-Liquid Interfaces. Angewandte Chemie International Edition 2005, 44 (33), 5172-5175,DOI:http://dx.doi.org/10.1002/anie.200501220.
  35. Enke, M., et al., Intrinsic Self-Healing Polymers Based on Supramolecular Interactions: State of the Art and Future Directions. Advances in Polymer Science 2016, 59-112,DOI:http://dx.doi.org/10.1007/12_2015_345.
  36. Chen, S., et al., Dynamic Ordering and Phase Segregation in Hydrogen-Bonded Polymers. Accounts of Chemical Research 2016, 49 (7), 1409-1420,DOI:http://dx.doi.org/10.1021/acs.accounts.6b00174.
  37. Binder, W., et al., Supramolecular Polymers and Networks with Hydrogen Bonds in the Main- and Side-Chain. In Advanced Polymer Science: „Hydrogen Bonded Polymers“, Binder, W. H., Ed. 2007; pp 1-78,DOI:http://dx.doi.org/10.1007/12_2006_109.
  38. Li, N., et al., Towards High Conductivity in Anion-Exchange Membranes for Alkaline Fuel Cells. ChemSusChem 2013, 6 (8), 1376–1383,DOI:10.1002/cssc.201300320.
  39. Stojanovic, A., et al., Designing melt flow of poly(isobutylene)-based ionic liquids. Journal of Materials Chemistry A 2013, 1 (39), 12159-12169,DOI:http://dx.doi.org/10.1039/C3TA12646C.
  40. Döhler, D., et al., Biomimetische Materialien: Selbstheilende Polymere. Chemie in unserer Zeit 2016, 50 (2), 90-101,DOI:http://dx.doi.org/10.1002/ciuz.201500686.
  41. Schulz, M., et al., Mixed Hybrid Lipid/Polymer Vesicles as a Novel Membrane Platform. Macromolecular Rapid Communications 2015, 36 (23), 2031-2041,DOI:http://dx.doi.org/10.1002/marc.201500344.
  42. Binder, W. H., Polymer-Induced Transient Pores in Lipid Membranes. Angewandte Chemie International Edition 2008, 47 (17), 3092-3095,DOI:http://dx.doi.org/10.1002/anie.200800269.
  43. Binder, W. H., et al., Self-Assembly of Fibers and Fibrils. Angewandte Chemie International Edition 2006, 45 (44), 7324-7328,DOI:http://dx.doi.org/10.1002/anie.200602001.
  44. Binder, W. H., et al., Domains and Rafts in Lipid Membranes. Angewandte Chemie International Edition 2003, 42 (47), 5802-5827,DOI:http://dx.doi.org/10.1002/anie.200300586.
  45. Frenzel, F., et al., Glassy Dynamics and Charge Transport in Polymeric Ionic Liquids. In Dielectric Properties of Ionic Liquids, Paluch, M.; Kremer, F., Eds. Springer International Publishing Switzerland 2016; pp 115-129,DOI:http://www.springer.com/de/book/9783319324876.
  46. Campanella, A., et al., Self-Healing in Supramolecular Polymers. Macromolecular Rapid Communications 2018, 1700739,DOI:http://dx.doi.org/10.1002/marc.201700739.
  47. Döhler, D., et al., CuAAC-Based Click Chemistry in Self-Healing Polymers. Accounts of Chemical Research 2017, 50 (10), 2610-2620,DOI:http://dx.doi.org/10.1021/acs.accounts.7b00371.
  48. Herbst, F., et al., Self-healing polymers via supramolecular forces. Macromolecular Rapid Communications 2013, 34 (3), 203-220,DOI:http://dx.doi.org/10.1002/marc.201200675.
  49. Krishnakumar, B., et al., Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chemical Engineering Journal 2020, 385, 123820,DOI:https://doi.org/10.1016/j.cej.2019.123820.
  50. Herbst, F., et al., Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polymer Chemistry 2012, 3 (11), 3084-3092,DOI:http://dx.doi.org/10.1039/C2PY20265D.
  51. Binder, W. H., et al., Melamine-formaldehyde resins. In Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc.: 2014; Vol. 7, pp 727-743,DOI:https://doi.org/10.1002/0471440264.pst498.
  52. Herbst, F., et al., Self-healing polymers via supramolecular, hydrogen bonded networks. In Self Healing Polymers: from Principles to Application, Binder, W. H., Ed. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2013; pp 275-300,DOI:https://doi.org/10.1002/9783527670185.ch11.
  53. Binder, W. H., Opening up new horizons in self-healing materials. EU Research 2019, 20,DOI:http://www.euresearcher.com/14/eu-research-live
  54. Döhler, D., et al., Von der Muschel zum Autolack. Nachrichten aus der Chemie 2016, 64 (9), 836-841,DOI:http://dx.doi.org/10.1002/nadc.20164046036.
  55. Schulz, M., et al., Beyond the Lipid-Bilayer: Interaction of Polymers and Nanoparticles with Membranes. Soft Matter 2012, 8 (18), 4849–4864,DOI:http://dx.doi.org/10.1039/C2SM06999G.
  56. Herbst, F., et al., Ordentlich Dynamisch : Supramolekulare Polymere. Nachrichten aus der Chemie 2010, 734-740,DOI:http://dx.doi.org/10.1002/nadc.201073367.
  57. Binder, W. H., Polymeric Ordering by H-bonds. Mimicking Nature by Smart Building Blocks. Monatshefte der Chemie / Chemical Monthly 2005, 136 (1), 1-19,DOI:http://dx.doi.org/10.1007/s00706-004-0236-0.
  58. Farnik, D., et al., Synthesis and Self Assembly of Hydrogen-Bonded Supramolecular Polymers. Macromolecular Symposia 2004, 217 (1), 247-266,DOI:http://dx.doi.org/10.1002/masy.200451320.
  59. Döhler, D., et al., Principles of Self Healing Polymers. In Self Healing Polymers: from Principle to Application, Binder, W. H., Ed. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2013; pp 7-60,DOI:https://doi.org/10.1002/9783527670185.ch1.
  60. Binder, W. H., et al., Biomimetic Principles in Macromolecular Science. In Bioinspiration and Biomimicry in Chemistry, Swiegers, G., Ed. John Wiley and Sons: Hoboken, New Jersey, 2012; pp 323-366,DOI:https://doi.org/10.1002/9781118310083.ch11.
  61. Binder, W. H., et al., Synthesis and Self-Assembly of Hydrogen-Bonded Supramolecular Polymers. In Complex Macromolecular Architectures, John Wiley & Sons (Asia) Pte Ltd: 2011; pp 53-95,DOI:http://dx.doi.org/10.1002/9780470825150.ch3.
  62. Binder, W. H., et al., „Click“-Chemistry in Macromolecular Synthesis. In Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc: 2009; p https://doi.org/10.1002/0471440264.pst565.
  63. Binder, W. H., et al., „Click“-chemistry on supramolecular materials. In Click Chemistry for Biotechnology and Materials Science, Lahann, J., Ed. Wiley-Blackwell: 2009; pp 119-175,DOI: https://doi.org/10.1002/9780470748862.ch7.
  64. Binder, W. H., Melamine–Formaldehyde Resins. In Encyclopedia of Polymer Science and Technology, July 15, 2004 ed.; 2004; pp 369-385,DOI:https://doi.org/10.1002/0471440264.pst498.