Multicomponent stress-sensing materials fabricated by 3D-printing-methodologies

Rupp, H., et al. Macromol. Rapid. Commun., 2021, DOI:https://doi.org/10.1002/marc.202000450

The preparation and characterization of mechanoresponsive, 3D-printed composites are reported using a dual-printing setup for both, liquid dispensing and fused-deposition-modeling. The here reported stress-sensing materials are based on high- and low molecular weight mechanophores, including poly(ε-caprolactone)-, polyurethane-, and alkyl(C11)-based latent copper(I)bis(N-heterocyclic carbenes), which can be activated by compression to trigger a fluorogenic, copper(I)-catalyzed azide/alkyne “click”-reaction of an azide-functionalized fluorescent dye inside a bulk polymeric material. The multicomponent specimen containing both, azide and alkyne, are manufactured via a 3D-printer to place the components separately inside the specimen into void spaces generated during the FDM-process, which subsequently are filled with liquids using a separate liquid dispenser, located within the same 3D-printing system, finally yielding a mechanoresponsive material.