

Modulhandbuch

für den Studiengang:

Chemie

im Master - Studiengang 120 Leistungspunkte

(Modulversionstand vom 20.09.2017)

Inhalt:

Anorganische Chemie Master (AC-M)	Seite 3
Makromolekulare Chemie Master, Wahlpflicht (MC-M-WP)	.Seite 5
Master-Arbeit	.Seite 7
Organische Chemie Master (OC-M)	Seite 9
Physikalische Chemie Master (PC-M)	. Seite 11
Technische Chemie Master, Wahlpflicht (TC-M-WP)	Seite 13
Umweltanalytik und Umweltchemie Master, Wahlpflicht (UAUC-M-WP)	. Seite 15
Vertiefung in der Fachrichtung Anorganische Chemie (AC-M-V)	. Seite 17
Vertiefung in der Fachrichtung Makromolekulare Chemie (MC-M-V)	Seite 20
Vertiefung in der Fachrichtung Organische Chemie (OC-M-V)	. Seite 23
Vertiefung in der Fachrichtung Physikalische Chemie (PC-M-V)	Seite 25
Vertiefung in der Fachrichtung Technische Chemie (TC-M-V)	Seite 28
Vertiefung in der Fachrichtung Umweltanalytik und Umweltchemie (UAUC-M-V)	. Seite 31

Modul: Anorganische Chemie Master (AC-M)

Identifikationsnummer:

CHE.00004.03

Lernziele:

- Die Studierenden erwerben grundlegende Kenntnisse in den Kerngebieten der modernen Anorganischen Chemie (Metallorganische Chemie, homogene Katalyse, Festkörperchemie, Strukturchemie und Materialwissenschaften). Darüber hinaus wird die Fähigkeit vermittelt, Probleme aus der aktuellen anorganisch-chemischen Forschung mit Hilfe moderner Syntheseund Strukturaufklärungsmethoden experimentell zu bearbeiten.

Inhalte:

- Schwerpunkte der modernen Anorganischen Chemie:
- 1. Metallorganische Chemie und homogene Katalyse
- 2. Festkörperchemie und deren Anwendung in den Materialwissenschaften
- 3. Anorganische Strukturchemie
- 4. Praktikum/Übung Synthesemethoden (metallorganische Chemie, homogene Katalyse, Festkörperchemie, Komplexchemie, Materialien) und Strukturaufklärung

Verantwortlichkeiten (Stand 11.10.2016):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Prof. Dr. Stefan Ebbinghaus
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	1.	Pflichtmodul	Fachnote	15/120

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Homogene Katalyse`	1.5	22	Wintersemester
Vorlesung `Bioanorganische Chemie`	1.5	23	Wintersemester
Synthesepraktikum Anorganische Chemie	4	60	Wintersemester
Selbststudium	0	180	Sommersemester
Vorlesung `Spezielle	1	15	Sommersemester
Hauptgruppenelementchemie`			
Vorlesung `Festkörperchemie`	2	30	Sommersemester
Selbststudium	0	120	Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- Praktikumsbericht

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Makromolekulare Chemie Master, Wahlpflicht (MC-M-WP)

Identifikationsnummer:

CHE.00008.02

Lernziele:

- grundlegendes Verständnis für die Chemie und Charakterisierung von Polymeren
- Grundkenntnisse in technologisch wichtigen polymeren Substanzklassen und Syntheseprinzipien von Polymeren
- Grundkenntnisse in physikalischer Chemie der Polymere und in wesentlichen Charakterisierungsmethoden von Makromolekülen
- Entwicklung von praktischen Fähig- und Fertigkeiten in Synthese und Charakterisierung von Polymeren

Inhalte:

- Aufbauprinzipien und Reaktionsmechanismen in der Makromolekularen Chemie
- Kennenlernen wichtiger Substanzklassen
- Grundlagenwissen und Einführung in die Mikrostrukturanalyse von Kettenmolekülen
- Erlernen von praktischen Fähig- und Fertigkeiten in der Synthese und Charakterisierung von Makromolekülen

Verantwortlichkeiten (Stand 22.08.2008):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wolfgang Binder
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 27.10.2008):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an
	(grp				Abschlussnote
Master	Chemie 120 LP	1.	Wahlpflichtmodul	Fachnote	10/120
Lehramt	Chemie (Gymnasium)	7.	Wahlpflichtmodul	Fachnote	erfolgreicher
Gymnasien					Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	4	60	Wintersemester
Selbststudium	0	90	Wintersemester
Praktikum	4	60	Sommersemester
Selbststudium	0	90	Sommersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Master-Arbeit

Identifikationsnummer:

CHE.00017.01

Lernziele:

- Fähigkeit, ein zeitlich begrenztes Forschungsprojekt zu formulieren, zu planen und selbstständig durchzuführen (umfassende Literaturrecherche, Auswahl der experimentellen Methoden)
- Fähigkeit, die erarbeiteten Ergebnisse kritisch zu bewerten
- Fähigkeit zur Kooperation in einem Forschungsteam und Fähigkeit zur interdisziplinären Zusammenarbeit
- Fähigkeit, die Ergebnisse in einer wissenschaftlichen Arbeit und einem wissenschaftlichen Vortrag zu präsentieren

Inhalte:

- Durchführung eines in der Regel experimentellen Forschungsprojektes auf einem aktuellen Gebiet der Chemie, bzw. angrenzender Gebiete
- Erstellung der Masterarbeit
- Präsentation der Ergebnisse der Masterarbeit

Verantwortlichkeiten (Stand 01.09.2008):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Hochschullehrer des Institutes für
II - Chemie, Physik und		Chemie
Mathematik		

Studienprogrammverwendbarkeit (Stand ..):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	4.	Pflichtmodul	Fachnote	30/120

Teilnahmevoraussetzungen:

Obligatorisch:

Abschluss von Master-Modulen im Umfang von 60 LP

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

900 Stunden

Leistungspunkte:

30 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
wiss. Arbeit unter Anleitung		900	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Masterarbeit	Masterarbeit	nicht möglich laut	100 %
		ABStPOBM §20 Abs.13	

Termine für die Modulleistung:

1.Termin: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der

Masterarbeit

1. Wiederholungstermin: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der

Masterarbeit und Vergabe eines neuen Themas

Hinweise:

Angebotsturnus: jedes Semester, nach Absprache mit der Betreuerin oder dem Betreuer der Masterarbeit

Modul: Organische Chemie Master (OC-M)

Identifikationsnummer:

CHE.00005.03

Lernziele:

- Erwerb grundlegender Kenntnisse der modernen Organischen Chemie (stereoselektive Synthese, Carbanionenchemie, bioorganische Chemie und Photochemie)
- Weiterentwicklung der chemischen Denkfähigkeit und der Fähigkeit zur Interdisziplinarität

Inhalte:

- Fachwissen über Eigenschaften, Synthese, Struktur und grundlegende Reaktionsmechanismen bioorganischer Reaktionen
- Fachwissen über die Prinzipien der Photochemie, organisch-photochemische Reaktionen und ihre Anwendungen
- Fachwissen über stereoselektive Additionsreaktionen, metallorganische Verbindungen, Carbene und Carbenkomplexe und ihr Einsatz in der Synthese

Verantwortlichkeiten (Stand 03.08.2010):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Carsten Tschierske
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	1.	Pflichtmodul	Fachnote	15/120

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Bioorganische Chemie`	2	30	Wintersemester
Selbststudium Vorlesung	0	70	Wintersemester
Vorlesung `Carbanionen und	2	30	Sommersemester
metallorganische Chemie`			
Selbststudium Vorlesung	0	70	Sommersemester
Vorlesung 'Moderne Photochemie'	2	30	Sommersemester
Selbststudium Vorlesung	0	70	Sommersemester
Vorlesung `Biochemie`	2	30	Sommersemester
Praktikum `Spezielle Organische Chemie`	4	60	Wintersemester
Selbststudium zum Praktikum	0	60	Wintersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	1/3 %
Klausur "Bioorganische	Klausur	Klausur	
Chemie"			
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	1/3 %
Klausur "Carbanionen und	Klausur	Klausur	
metallorganische Chemie"			
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	1/3 %
Klausur "Moderne	Klausur	Klausur	
Photochemie"			

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Physikalische Chemie Master (PC-M)

Identifikationsnummer:

CHE.00006.03

Lernziele:

- Vertiefung der Ausbildung auf den Gebieten Thermodynamik, Spektroskopie, Grenzflächen und Kolloide bzw. Flüssigkristalle sowie der biophysikalischen Chemie
- Erkennen von Struktur-Eigenschafts-Beziehungen durch Modellbetrachtungen
- Erkennen von Möglichkeiten für technische Anwendungen

Inhalte:

- Mischphasenthermodynamik
- biophysikalische Chemie: Proteine, Nukleinsäuren, Polysaccharide, Lipide
- biophysikalische Messmethoden
- thermotrope und lyotrope Flüssigkristalle
- Grenzflächen- und Kolloidchemie
- optische und spektroskopische Messverfahren
- Durchführung von fortgeschrittenen physikalisch-chemischen Experimenten

Verantwortlichkeiten (Stand 21.11.2013):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	1.	Pflichtmodul	Fachnote	15/120

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung PC-M Ia oder Ib	2	30	Wintersemester
Selbststudium	0	95	Wintersemester
Vorlesung PC-M II	2	30	Wintersemester
Selbststudium	0	95	Wintersemester
Vorlesung PC-M III	2	30	Sommersemester
Selbststudium	0	70	Sommersemester
Praktikum PC-M I	4	60	Sommersemester
Selbststudium	0	40	Sommersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Technische Chemie Master, Wahlpflicht (TC-M-WP)

Identifikationsnummer:

CHE.00009.02

Lernziele:

- quantitatives Verständnis für Gas-Flüssig-Reaktionssysteme
- vertiefte Kenntnis technischer Herstellungsverfahren für wichtige organische und anorganische Zwischenprodukte
- grundlegende Kenntnisse über die Wirkungsweise heterogener Katalysatoren
- Kenntnis und praktische Erfahrung in der Anwendung von Grundverfahren zur Herstellung und Charakterisierung fester Katalysatoren

Inhalte:

- Prinzipien und Methoden der Technischen Chemie in gas-flüssig Reaktionssystemen (Transport- und Mikromischungseffekte)
- wichtige technisch-chemische Prozesse zur Herstellung von organischen und anorganischen Zwischenprodukten
- ausgewählte heterogene Katalysatorsysteme, ihre Herstellung und ihre Wirkungsweise
- praktische Herstellung und einfache Charakterisierung fester Katalysatoren

Verantwortlichkeiten (Stand 11.06.2013):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Thomas Hahn
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 24.07.2009):

Studiengang	Studienprogramm (Leistungspunkte)	Studien- semester	Modulart	Benotung	Anteil der Modulnote an
					Abschlussnote
Master	Chemie 120 LP	1. oder 2.	Wahlpflichtmodul	Fachnote	10/120
Lehramt	Chemie (Gymnasium)	7.	Wahlpflichtmodul	Fachnote	erfolgreicher
Gymnasien					Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Winter- und
			Sommersemester
Selbststudium	0	90	Winter- und
			Sommersemester
Praktikum	4	60	Winter- und
			Sommersemester
Übung zum Praktikum	1	15	Winter- und
			Sommersemester
Selbststudium	0	90	Winter- und
			Sommersemester

Studienleistungen:

- Praktikumsbericht und Seminarvortrag

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden Studienjahr

Hinweise:

Studierende, die die Vertiefungsrichtung Technische Chemie wählen, müssen dieses Modul im ersten Semester beginnen.

Modul: <u>Umweltanalytik und Umweltchemie Master, Wahlpflicht</u> (UAUC-M-WP)

Identifikationsnummer:

CHE.00010.03

Lernziele:

- Grundlagen der Umweltchemie, Konzepte und Strategien
- Methoden der Lebensmittel- und Umweltanalytik (matrixorientiert)
- Arbeiten mit modernen Methoden der instrumentellen Spurenanalytik

Inhalte:

- In den Vorlesungen werden die Grundlagen der Umweltchemie, Konzepte und Strategien sowie die modernen Methoden der Lebensmittel- und Umweltanalytik (matrixorientiert) vermittelt. Im Praktikum und den Übungen werden praktische Kenntnisse und Fertigkeiten beim Arbeiten mit modernen Methoden der instrumentellen Spurenanalytik vermittelt.

Verantwortlichkeiten (Stand 11.06.2013):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wilhelm Lorenz
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 27.10.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	1. oder 2.	Wahlpflichtmodul	Fachnote	10/120
Lehramt	Chemie (Gymnasium)	7.	Wahlpflichtmodul	Fachnote	erfolgreicher
Gymnasien					Abschluss

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Für die erfolgreiche Durchführung des Praktikums sind instrumentell analytische Kenntnisse wünschenswert, inklusive eines erfolgreich bestandenen instrumentell analytischen Praktikums.

Dauer:

2 Semester

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung Umweltchemie I	2	30	Wintersemester
Selbststudium	0	45	Wintersemester
Vorlesung Lebensmittel- und	2	30	Sommersemester
Umweltanalytik I			
Selbststudium	0	45	Sommersemester
Praktikum	4	60	Sommersemester
Übung zum Praktikum	1	15	Sommersemester
Selbststudium	0	75	Sommersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums und der Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Studienjahr

Hinweise:

Studierende, die die Vertiefungsrichtung Umweltanalytik und Umweltchemie wählen, müssen dieses Modul im ersten Semester beginnen. Maximale Anzahl der Studierenden: 6

Modul: Vertiefung in der Fachrichtung Anorganische Chemie (AC-M-V)

Identifikationsnummer:

CHE.00011.02

Lernziele:

- Die Studierenden erwerben spezielle Kenntnisse in der modernen Anorganischen Chemie durch eine Kombination aus Vorlesungen und einem forschungsorientierten Praktikum. Die Studierenden werden in die Lage versetzt, sich selbstständig an einem aktuellen Forschungsprojekt zu beteiligen (Planung und Durchführung der Experimente, Methodenauswahl, Auswertung und kritische Beurteilung der Ergebnisse). Die Studierenden lernen, die Ergebnisse der Arbeit in schriftlicher Form und in Form eines Vortrags zu präsentieren.

Inhalte:

- Vorlesungen: vertiefende Behandlung spezieller Gebiete der Anorganischen Chemie (z. B. Bioanorganische Chemie, NMR- Spektroskopie, Beugungsmethoden, Anorganische Materialien). Die Auswahl der Vorlesungen erfolgt in Abstimmung mit der Betreuerin oder dem Betreuer des Vertiefungsmoduls. Es besteht die Möglichkeit, zwei der insgesamt 6 SWS Vorlesung aus dem Vorlesungsprogramm anderer Vertiefungsrichtungen zu wählen.
- Praktikum/Übung: forschungsorientiertes Praktikum, das sich an aktuellen wissenschaftlichen Projekten der Arbeitsgruppen orientiert.

Verantwortlichkeiten (Stand 04.11.2016):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Stefan Ebbinghaus
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	3.	Wahlpflichtmodul	Fachnote	25/120

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Anorganische Chemie Master (AC-M)
- Organische Chemie Master (OC-M)
- Physikalische Chemie Master (PC-M)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

750 Stunden

Leistungspunkte:

25 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	6	90	Wintersemester
Selbststudium	0	180	Wintersemester
Praktikum	19	285	Wintersemester
Übung zum Praktikum	1	15	Wintersemester
Selbststudium	0	180	Wintersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Praktikumsbericht	Praktikumsbericht	Praktikumsbericht	50 %
Präsentation mit Diskussion	Präsentation mit Diskussion	Präsentation mit Diskussion	50 %

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Vertiefung in der Fachrichtung Makromolekulare Chemie (MC-M-V)

Identifikationsnummer:

CHE.00014.02

Lernziele:

- grundlegendes Verständnis für den interdisziplinären Charakter des Wissensgebietes
- vertiefte Stoffkenntnisse in der Makromolekularen Chemie
- Kenntnisse in der Synthesechemie von Polymeren, Reaktionsmechanismen
- vertiefte Kenntnisse in den Charakterisierungsmethoden von Kunststoffen
- vertiefte Kenntnisse und praktische Erfahrungen bezüglich der Synthese und der fortgeschrittenen Charakterisierung von Polymermaterialien

Inhalte:

- Synthese von Polymeren
- Überblick über natürliche und Spezialpolymere sowie Hybridpolymermaterialien
- industrielle Methoden in der Kunststoffcharakterisierung und Darlegung der Zusammenhänge zwischen Mikro- und Makrostruktur
- praktische Herstellung und fortgeschrittene Charakterisierung von Polymeren

Verantwortlichkeiten (Stand 21.08.2008):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wolfgang Binder
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	3.	Wahlpflichtmodul	Fachnote	25/120

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Anorganische Chemie Master (AC-M)
- Organische Chemie Master (OC-M)
- Physikalische Chemie Master (PC-M)
- Makromolekulare Chemie Master, Wahlpflicht (MC-M-WP)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

750 Stunden

Leistungspunkte:

25 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	6	90	Wintersemester
Selbststudium	0	180	Wintersemester
Praktikum	20	300	Wintersemester
Selbststudium	0	180	Wintersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Vertiefung in der Fachrichtung Organische Chemie (OC-M-V)

Identifikationsnummer:

CHE.00012.02

Lernziele:

- Grundkenntnisse in der Anwendung moderner metallorganischer und chemoenzymatischer Synthesemethoden
- Weiterentwicklung der mechanistisch-chemischen Denkfähigkeit

Inhalte:

- Fachwissen über die theoretischen und methodischen Ansätze zur Syntheseplanung, sowie der Beschreibung und Untersuchung von Reaktionsmechanismen
- Aspekte der retroanalytischen Syntheseplanung

Verantwortlichkeiten (Stand 09.09.2008):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. René Csuk
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	3.	Wahlpflichtmodul	Fachnote	25/120

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Anorganische Chemie Master (AC-M)
- Organische Chemie Master (OC-M)
- Physikalische Chemie Master (PC-M)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

750 Stunden

Leistungspunkte:

25 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung `Chemoenzymatik`	2	30	Wintersemester
Selbststudium Vorlesung	0	70	Wintersemester
Vorlesung `Supramolekulare Chemie`	2	30	Wintersemester
Selbststudium zur Übung	0	70	Wintersemester
Vorlesung `Exp. u. theoret. Chem. Kinetik`	2	30	Wintersemester
Selbststudium Vorlesung	0	70	Wintersemester
Praktikum `Moderne Synthesemethoden`	19	285	Wintersemester
Übung zum Praktikum	1	15	Wintersemester
Selbststudium zum Praktikum	0	150	Wintersemester

Studienleistungen:

- Praktikumsbericht
- Seminarvortrag zu OC-M-V

Modulvorleistungen:

- keine

Modulteilleistungen:

Modulteilleistungen	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	1/3 %
Klausur `Chemoenzymatik`	Klausur	Klausur	
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	1/3 %
Klausur `Supramolekulare	Klausur	Klausur	
Chemie`			
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	1/3 %
Klausur `Exp. u. theoret.	Klausur	Klausur	
Chem. Kinetik`			

Termine für alle Modulteilleistungen:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Vertiefung in der Fachrichtung Physikalische Chemie (PC-M-V)

Identifikationsnummer:

CHE.00013.02

Lernziele:

- Heranführung an die Forschung auf den Gebieten der Thermodynamik, Spektroskopie, Grenzflächen- und Kolloidchemie, der Flüssigkristalle, der physikalischen Chemie der Polymere, bzw. der Biophysikalischen Chemie
- Erlernen des unabhängigen experimentellen Arbeitens und des Ausarbeitens von Forschungszielen und Forschungsprojekten
- Erlernen der Darstellung von Forschungsvorhaben und Forschungsprojektergebnissen

Inhalte:

- Statistische Thermodynamik
- spezielle experimentelle Methoden der Biophysikalischen Chemie
- fortgeschrittene Methoden der Kolloid- und Grenzflächenchemie
- Theorie der Eigenschaften thermotroper und lyotroper Flüssigkristalle
- Physikalische Chemie der Polymeren
- Charakterisierung nanostrukturierter Materialien
- Durchführung von forschungsnahen physikalisch-chemischen Experimenten

Verantwortlichkeiten (Stand 05.06.2014):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Dariush Hinderberger
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 18.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	3.	Wahlpflichtmodul	Fachnote	25/120

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Anorganische Chemie Master (AC-M)
- Organische Chemie Master (OC-M)
- Physikalische Chemie Master (PC-M)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

750 Stunden

Leistungspunkte:

25 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung PC-M-V I	2	30	Wintersemester
Selbststudium	0	60	Wintersemester
Vorlesung PC-M-V II	2	30	Wintersemester
Selbststudium	0	60	Wintersemester
Vorlesung PC-M-V III	2	30	Wintersemester
Selbststudium	0	60	Wintersemester
Praktikum PC-M-V	19	285	Wintersemester
Übung zum Praktikum	1	15	Wintersemester
Selbststudium	0	180	Wintersemester

Studienleistungen:

- Testat Vorlesung PC-M-V I
- Testat Vorlesung PC-M-V II
- Testat Vorlesung PC-M-V III
- Seminarvortrag und Forschungsbericht zum Praktikum PC-M-V

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Vertiefung in der Fachrichtung Technische Chemie (TC-M-V)

Identifikationsnummer:

CHE.00015.03

Lernziele:

- vertiefte Kenntnisse in der quantitativen Beschreibung heterogener Reaktionssysteme
- vertiefte Kenntnisse und praktische Erfahrungen bezüglich Herstellung und fortgeschrittener Charakterisierung poröser Festkörper und heterogener Katalysatoren
- Kenntnisse zu den verschiedenen Konzepten des Umweltschutzes in der Chemischen Industrie einschließlich vertiefter Kenntnisse der chemischen Aspekte erneuerbarer Energien

Inhalte:

- Prinzipien und Methoden der Technischen Chemie in der Heterogenen Katalyse
- Umweltschutz und alternative Konzepte in der Technischen Chemie
- praktische Herstellung und fortgeschrittene Charakterisierung poröser Festkörper und heterogener Katalysatoren

Verantwortlichkeiten (Stand 11.06.2013):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Michael Bron
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 17.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	3.	Wahlpflichtmodul	Fachnote	25/120

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Anorganische Chemie Master (AC-M)
- Organische Chemie Master (OC-M)
- Physikalische Chemie Master (PC-M)
- Technische Chemie Master, Wahlpflicht (TC-M-WP)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

750 Stunden

Leistungspunkte:

25 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	6	90	Wintersemester
Selbststudium	0	180	Wintersemester
Praktikum	19	285	Wintersemester
Übung zum Praktikum	1	15	Wintersemester
Selbststudium	0	180	Wintersemester

Studienleistungen:

- Praktikumsbericht

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündliche Prüfung	mündliche Prüfung	mündliche Prüfung	100 %

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls

1. Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters

2. Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden

Modul: Vertiefung in der Fachrichtung Umweltanalytik und Umweltchemie (UAUC-M-V)

Identifikationsnummer:

CHE.00016.03

Lernziele:

- Methoden und Strategien der Umweltchemie, Toxikologie und Ökotoxikologie
- Methoden der Lebensmittel- und Umweltanalytik (substanzorientiert)
- fortgeschrittenes Arbeiten mit modernen Methoden der instrumentellen Spurenanalytik

Inhalte:

- In den Vorlesungen werden vertiefte Kenntnisse in der Umweltchemie der Toxikologie und Ökotoxikologie sowie die modernen Methoden der Lebensmittel- und Umweltanalytik (substanzorientiert) vermittelt. Im Praktikum und den Übungen werden fortgeschrittene praktische Kenntnisse und Fertigkeiten beim Arbeiten mit modernen Methoden der instrumentellen Spurenanalytik vermittelt.

Verantwortlichkeiten (Stand 11.06.2013):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Chemie	Prof. Dr. Wilhelm Lorenz
II - Chemie, Physik und		
Mathematik		

Studienprogrammverwendbarkeit (Stand 18.01.2008):

Studiengang	Studienprogramm	Studien-	Modulart	Benotung	Anteil der
	(Leistungspunkte)	semester			Modulnote an
					Abschlussnote
Master	Chemie 120 LP	3.	Wahlpflichtmodul	Fachnote	25/120

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Anorganische Chemie Master (AC-M)
- Organische Chemie Master (OC-M)
- Physikalische Chemie Master (PC-M)
- Umweltanalytik und Umweltchemie Master, Wahlpflicht (UAUC-M-WP)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

750 Stunden

Leistungspunkte:

25 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Vorlesung	2	30	Wintersemester
Selbststudium	0	30	Wintersemester
Praktikum	19	285	Wintersemester
Übung zum Praktikum	1	15	Wintersemester
Selbststudium	0	270	Wintersemester

Studienleistungen:

- erfolgreicher Abschluss des Praktikums und der Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: bis spätestens vier Wochen nach Ende der Lehrveranstaltungen des Moduls
1.Wiederholungstermin: bis spätestens Beginn der Vorlesungszeit des darauf folgenden Semesters
2.Wiederholungstermin: bis spätestens zur Modulprüfung dieses Moduls im darauf folgenden